Performance Models of Interactive,
Immersive Visualization for Scientific
Applications

Valerie E. Taylor
EECS Department, Northwestern University
Evanston, Illinois USA

Rick Stevens Thomas Canfield

MCS Department, Argonne National Laboratory
Argonne, Hlinois USA

Abstract

In this paper we develop a performance model for analyzing the end-
to-end lag in a combined supercomputer/virtual environment. We first
present a general model and then use this model to analyze the lag of
an interactive, immersive visualization of a scientific application. This
application consists of a finite element simulation executed on an IBM
SP-2 parallel supercomputer and the results displayed in real-time in the
CAVE Automatic Virtual Environment. Our model decouples the view-
point lag (not involving the simulation) from the interaction lag (using
the results of the simulations). This model allows one to understand the
relative contributions to end-to-end lag of the following components: ren-
dering, tracking, network latency, simulation time, and various types of
synchronization lags. The results of the study indicate that the rendering
and network latency are the major contributors of the end-to-end lag.

1 Introduction

Interactive, immersive visualization allows observers to move freely about com-
puter generated 3D objects and to explore new environments. This technology
can be used to extend our perception and understanding of the real world by
enabling observation of events that take place in spaces that are remote, pro-
tracted or dilated in time, hazardous, or too small or large to view intricate
details. The 3D environment can be a distortion of reality projected on a physi-
cal framework that enables the display of non-visual, physical information, such
as temperature, velocity, electric and magnetic fields, and stresses and strains.
In engineering, this technology may be incorporated into the product design
cycle to allow virtual prototyping and testing of products prior to the physical
construction. Hence, interactive, immersive 3D visualization is an important
medium for scientific applications.

An interactive, immersive visualization of scientific simulations involves four
major components: the graphics system, the display system, the simulation sys-
tem, and the communications between the various components. The graphics
system performs the calculations for the rendering of the objects used in the
display. These calculations are computationally intensive and often require
high-performance computers, especially for volume reconstruction. The dis-
play system consists of the screen, projectors, interactive devices, and tracking
sensors. The user interacts with the 3D objects via devices such as a head
tracker or hand-held wand (similar to a mouse). The simulation system per-
forms the calculations for the analysis of the scientific phenomenon. Again
high-performance computers, often parallel systems, are required to reduce the
execution time of the simulation. The last component consists of the connec-
tions used to communicate information between the user (via the display) and
the graphics system and between the graphics and simulation systems. A crit-
ical issue to be addressed is how to reduce the end-to-end lag time, i.e., the
delay between a user action and the display of the result of that action. Liu
et. al. [9] found lag time to be equally important as frame rate for immersive
displays.

Lag has been studied in the context of teleoperated machines, head-mounted
displays, and telepresence systems [9, 16]. The goal of this paper is to extend
these models and techniques for lag analysis to include integrated supercom-
puter applications with interactive, immersive virtual interfaces. The addition
of supercomputer simulations into the virtual environment increases the com-
plexity of the models. Hence, these models are important for understanding
the impact of the various system components on the lag time.

We conduct an extensive case study of a visualization system to display
the results of a finite element simulation of a grinding process, a simple but
widely used manufacturing task. The display system consists of a CAVE (Cave
Automatic Virtual Environment) [11], an interactive immersive 3D system.
We have instrumented all major processes in the system and have developed
a performance model that allows us to understand the relative contributions
to end-to-end lag of rendering, tracking, local network connections to the su-
percomputer, supercomputer simulation, and various types of synchronization
lags. The concepts presented in this paper can be extended easily to other
scientific applications, using both local and remote supercomputers.

Our model decouples the viewpoint lag (not involving the simulation) from

the interaction lag (using the simulation results). Our analysis indicate that
the major component of viewpoint lag is the rendering lag. For the interaction
lag, majority of the time is comprised of rendering and network lags.

The remainder of the paper is organized as follows. In Section 2 we discuss
previous work, followed by the details of the visualization environment available
at Argonne National Laboratory (the site where this study was conducted) in
Section 3. We present our general model for end-to-end lag in Section 4. The
findings of the case study are given in Section 5. We discuss methods for
reducing the lag in Section 6 and summarize the paper in Section 7.

2 Previous Work

In [16] Wloka presents a thorough analysis of lag time in multiprocessor virtual
reality systems. The focus is on the viewpoint lag. He identifies the various
sources of lag time: input device lag — time required to obtain position and
angle measurements of input device, application lag — application-specific pro-
cessing of input device mechanism, rendering lag — time to render the data
and display it, synchronization lag — total time the sample is waiting between
processing stages, and frame-rate induced lag — the time between changes in
the display. In Wloka’s system, the application-specific processing is directly
dependent on one user input device. In contrast, we analyze an existing system
for which the user has two input devices, the head tracker (which affects the
viewpoint and interaction lags) and the wand (which affects the interaction
lag). Methods for reducing the lag in our system must consider the relation-
ship between the two lags; a reduction in lag for one input device may result
in an increase in lag for a second input device. Further, our system includes a
parallel machine and a shared-memory multiprocessor system connected via a
network. Therefore, we consider two additional sources of lag: the network lag
and simulation lag.

In [10] Mine characterizes the relative performance of various tracking tech-
nologies, which include two magnetic trackers from Ascension Technology Cor-
poration and two from Polhemus Incorporated. This characterization is consid-
ered in the context of reducing end-to-end delay in head-mounted systems. The
focus, however, i1s on the tracking lag only; no attention is given to the other
sources of lag. In contrast, we consider all the sources of lag in our existing
system.

Methods for reducing lag is an active area of research. Such methodsinclude
prediction [8, 3, 1], time-critical computing [4, 5, 15], and use of parallelism.
Prediction methods use extrapolation to reduce tracker lag by predicting fu-
ture input data based upon past data. These methods require that the other
components of lag have constant lag times. This is generally not the case, espe-
cially for systems including scientific simulations executed on supercomputers.
Time-critical computing trades computation time for computation accuracy,
which is not advisable for directly reducing lag. The use of parallelism reduces
the lag by increasing the computing resources used for the computations. In
this paper we consider the use of parallelism with the simulation and graphics.
We also discuss the benefits of reduction in scene complexity for reducing lag.

o

Frant Wall

.
HEM ue

CAVE Entrance

Figure 1: Supercomputing/Visualization environment.

3 Visualization Environment

The interactive, immersive simulation environment at Argonne National Lab-
oratory consists of a 128-node IBM SP-2 system, an SGI Onyx, network con-
nections between the SGI Onyx and IBM SP-2, and a CAVE as illustrated in
Figure 1 . Currently, the network connection can be configured to be an ATM
OC-3c, NSC HIPPI switch, or Ethernet. Because of the focus on performance,
we provide details of the various components of the environment.

3.1 Display Component

The CAVE, the display component, creates a large field of view by projecting
images onto two walls and the floor of a ten-foot cube. Infrared emitters are
synchronized to the projectors to provide a stereo sync for the Crystaleyes LCD
glasses worn by each user. Stereo cues are provided by displaying sequentially
images of the left-eye view followed by the right-eye view. Tracking is provided
by an Ascension Flock of Birds tracking system with two input modules. One
sensor 1s used to track the head movements, and the other is for the hand-
held wand. The sensor on the wand is slaved to the head sensor, which is
connected via a serial line to the SGI Onyx. The wand also has three buttons
and a joystick for interacting with the virtual world. The wand buttons and
joystick are interfaced to the SGI Onyx via an IBM PC, which provides A/D
conversion, debounce, and calibration. In the CAVE, the scientist is effectively
immersed in the phenomenon under study and provides input to the simulation
or experiment via the wand. In addition, other observers can passively share
the virtual reality experience by wearing the LCD glasses.

Ascension Flock of Birds sensors are used to generate the position and angle
of the head unit and the wand. These sensors can perform updates at the rate

of 10 to 144 measurements per second [2]. The existing system is configured
to operate in the range of 100 measurements per second. The buttons on the
wand are sampled by an IBM PC at the rate of 100 Hz.

3.2 Graphics Component

The SGI Onyx is a shared-memory multiprocessor system with an extensive
graphics subsystem. Our system has 128 MB RAM, 10 GB disk, four R4400
processors and three RealityEngine2 graphics pipelines; the system runs Irix
5.3 and AFS. Each RealityEngine2 has a geometry engine consisting of Intel
1860 microprocessors, a display generator, and 4 MB raster memory [13]. The
Onyx is used to drive the virtual environment interface. Each graphics pipe
is connected to an Electrohome Marque 8000 high-resolution projector, which
projects a high-resolution image onto the screens of the CAVE. The projectors
are running at 96 Hz frame rate in stereo mode.

All of the CAVE code is executed on the SGI Onyx, using all four R4400
processors. The code consists of five processes: a main, three rendering, and
one tracker. The main routine is responsible for sending and receiving data to
and from the simulation. The rendering loops perform the calculations for the
surface graphics, and the tracker loop obtains the interactive commands. The
three rendering processes, corresponding to the two walls and the floor, each
run on a dedicated R4400 processor; these processes synchronize at the end of
the rendering calculations for each frame. The tracker and main processes time
share the fourth processor. The code is explained further in Section 4.

3.3 Simulation Component

The simulation component consists of a large-scale, 128-processor IBM SP-2
supercomputer with a high-performance I/O environment. This system is used
for general-purpose parallel supercomputing. Each SP node has 128 MB RAM,
1 GB local disk and is connected to other processors via a TB-2 high-speed
interface to the IBM vulcan switch. Some of the processors in this system
have been equipped with ATM, HIPPI, and Ethernet interfaces. The IBM
system 1is also interfaced to 220 GB of high speed RAID disk and connected
to an Ampex DST-800 automated tape library. The I/O system of the IBM
SP-2 will eventually be used for CAVE recording and playback experiments,
but that work is beyond the scope of this paper. Simulations are executed on
the SP-2 using a scheduler developed at Argonne and can be run in batch or
interactive mode. For efficient access, the processors used in the simulation
with the CAVE cannot be scheduled by other users.

3.4 Interconnections

A user controls the field of view with the head tracker and simulation param-
eters with the wand. As discussed previously, the IBM PC and Flock of Birds
tracking system are connected to two Onyx serial ports as illustrated in Fig-
ure 1. The IBM SP-2 and SGI Onyx communicate via an ATM OC-3¢, NSC
HIPPI switch, or Ethernet. The ATM network uses a Fore Systems switch and
both 100 Mbps and 155 Mbps cards. The HIPPI interface is a 800 Mbps net-
work that connects via a Network Systems Corporation’s HIPPI switch. The

Ethernet provides a 10 Mbps connection. The IBM SP-2 and the SGI Onyx
are within the same building, allowing us to use LAN networking technology
for these experiments. One of our long-term goals is to use multiple supercom-
puters and multiple CAVEs and derivatives (like ImmersaDesks and HMDs)
for wide area collaborative use.

4 Performance Model

Recall from Section 1 that the metric that we are attempting to minimize is
the lag time of the user interaction. Given two input devices, we consider two
classifications of interactions:

e movement of the head tracker: this type of interaction causes a change to
the field of view; the data sent to the simulation process is not modified

— the lag is defined as Qu;ew

e movement and clicking of wand buttons: this type of interaction causes
modifications to the simulation process, for which the results causes a
change to the graphics (dictated by the meaning of the wand buttons) —
the lag is defined as Qinieract

The operations that are executed based upon a user interaction are the follow-
ing:

1. The sensors generate the position and rotation of the header tracker and
wand; the personal computer records the position of the wand buttons
(Tiracr) [input device lag]

2. The wand data (read by the rendering process) is sent to the simulation
process (Tyrite) [network write lag]

3. The simulation process uses this data to update the analysis (T) [sim-
ulation lag)

4. The graphics process reads the newly generated simulation results (T}cqq)
[network read lag]

5. The graphics process uses the data from the simulation process and the
tracker to render a new image (Tycnder) [rendering lag]

In addition to the above lags there is also synchronization lag as described
previously. We consider four sources of synchronization lag: (1) Tsync(rr): the
time from when the tracker measurement is available until the data is read by
one of the rendering processes, (2) Tsync(rs): the time from when the rendering
process has read the updated wand values until the values are available for
writing to the simulation process, (3) Tsync(sr): the time from when the data
is available from the simulation process until used by the rendering process,
and (4) Tsyne(r) the time from when the data is available in the frame buffer
and the image is available on the screen.

~+—— Wand/Simulation Interaction Lag ———»=
Network Read Lag i

Procass ~—Viewpoint Lag = i

Simulation Update Lag

Simulation

IMiin

Rendero

Render 1

Render?

Triacker

Lser winiani ik

-, Scene

T
Rendering Lag muH.Pﬂ':Ewa

IW':ml:l.:anl:l H:am:l Scene
Tracker Event Update E
. . (e in cad evead) 2 i

e
Synchronization La

Sync Lag (trackenfrender];
—ei e
i (sim/render)

—

Network Write Lag

i
i i8ynchronization Lag
P (render/sim)

Figure 2: Components of lag time for Qe and Qinterget-

Given the above sequence of operations, the following equations represent
the lag time for the head tracker (Quiew) and the wand (Qinterqet):

Quiew = Tirack + Tsync(TR) + Trender + Tsync(F) (1)
Qinteract = Tiraer + Tsync(TR) + Tsync(RS) + Twrite + Tsim + Tread +
Tsync(SR) + Trender + Tsync(F) (2)

The derivation of these equations is discussed in the following section.

4.1 Lag Sources

In Figure 2, we provide a detailed diagram of the various lag terms and their re-
lations to the lag time equations. The model assumes an asynchronous process
implementation of the system (i.e., each major process of the system is running
asynchronously). This assumption is consistent with the actual implementation
of the visualization environment.

The diagram consists of six major processes. Recall from Section 3.2 that
the CAVE code entails five processes: one main process, three rendering pro-
cesses, and one tracker process. The sixth process consists of the simulation,
which may be executing on one or more processors of the IBM SP-2. In this
paper, we consider the simulation to be one process. More advanced models
may support the simulation as a number of processes that may be able to com-
municate intermediate data to the rendering process or stagger communication
to reduce network latency.

The main process runs on the Onyx and is responsible for initiating the
rendering processes (this is done only once) and communicating with the simu-
lation process. Hence this process has three states: writing data via the network

to the SP-2, reading data via the network from the SP-2, and copying the sim-
ulation data to the SGI shared memory to be used by the rendering processes.
The time devoted to the memory copy is negligible and therefore not included
in the model. The simulation process consists of three states: reading from the
network from the main process, processing the simulation update, or writing
data to the network for the main process. Any wait time incurred with the
network is considered part of the corresponding read or write time.

There are three rendering processes used for the displays on the two walls
and the floor of the CAVE. These processes are indicated in the diagram as
Render0, Renderl, and Render2. These processes are essentially identical with
the exception of Render(process, which reads the tracking data from the track-
ing process and makes it available to the other rendering process. Only one
rendering process performs this task to insure that all three rendering processes
are performing calculations in response to the same tracker data. The render-
ing processes use the tracking and simulation data to render the six images
displayed in the CAVE; they synchronize at the end of each frame and dump
their buffers.

The tracker process is responsible for continuously reading the tracking
information from the serial SGI ports, scaling the data, and writing the data
into a region of memory for reference by Render0. The tracker process is also
responsible for initialization of the tracker and wand controls. The tracker
process, like the other processes, operates asynchronously, reading tracker data
as fast as the tracking system can produce it.

4.2 Lag Equations

The diagram in Figure 2 illustrates all the sources of lag that are used in our
model. Assuming a wand and tracker event occurs as indicated in the diagram,
we can trace the lag times that result in a scene update due to a head event
(indicated in the diagram) and a scene update due to a wand event (indicated
in the diagram).

When a head tracker event occurs, the tracker process reads the values from
the Flock of Birds ports, perform the calibration, and places these values in
shared memory. The time to execute these operations is given by Ti,qeper In
Equations (1) and (2). Typically, the tracker process is sampling the sensors
faster that the rendering process can render a new display. Only the last
sample obtained prior to the start of a new rendering cycle i1s read by the
rendering process. Hence, the average “wait time” or synchronization lag is
half the average tracker update time. This time corresponds to Ty, .(TR) In
the equations. The head tracker sample, read by Render(Q process, is used
by the three rendering processes to render a new image. This corresponds to
Trender 10 the equation. When the new image data is available, it may not be
displayed immediately. There is some wait time due to the frame rate and the
scan rate of the projectors. The average of this synchronization time is half the
frame and scan times per eye for stereo; this time is given by Ty, () in the
equations. Lastly, we get the scene update from the head tracker event. The
summation of these four terms compose the viewpoint lag or Qysew-

When a wand tracker event occurs, the sensors are again sampled by the
tracker process and read by Render(Q process. This task corresponds to Tirqcrer
and Ty, .(Tr) as described above. At this point, the analysis takes a different

path from that taken with the viewpoint lag. Once the wand position has
been read by Render0 process, it is used by the main process to forward to
the simulation process. This wand data may not be read immediately by the
main process. The average time that this data “waits” to be used is equal to
half the time of the main process. This synchronization time corresponds to
Tsyne(rs) in Equation (2). The main process sends these wand values to the
simulation process to be used for updates to the simulation analysis. These
values are sent across the network connecting the SGI to the IBM SP-2. This
time corresponds to Tyrite. The simulation time is denoted by the term Tg;p,.
The updated simulation values are then sent to the main process, corresponding
to a read by the main process. This time is denoted by the term T}.qq. After
the data is read by the main process, it may not be used immediately by the
rendering processes. The average of this “wait” time is equal to half the average
of the rendering time; this synchronization time is denoted as Ty, (sgr). Once
the values have been read by the rendering processes, a new image is rendered
and displayed corresponding to Tyenger + Tsyne(r)- The summation of these
nine terms compose the interaction lag or Qinterget-

5 Case Study: Grinding Process

The problem used in this study is a computer simulation of a grinding process,
which is commonly used in manufacturing environments. A picture of the vir-
tual grinder is given in Figure 3. An operator is immersed in a machine room
and can perform the task of grinding a part with a wheel by controlling the
motion of the three axes of a table with the wand. When the wheel is in contact
with the part on the table, heat is generated as a result of the grinding motion.
Internal stress and flow of heat are produced in the part, wheel, and table.
The temperature and stress for a simple system are computed in real time on
the IBM SP-2; the simulations involve multibody dynamics and finite element
analysis. The results are selectively displayed on the various components. Ma-
terials ablated by the grinding are ejected as small particles and displayed as
sparks. This prototype is indicative of larger systems used to analyze complex
mechanical systems, including the detection of contacting surfaces, friction at
the interfaces, large rigid body motions, and thermal-mechanical analysis with
finite elements.

The virtual grinder is fairly simple in that it has 433 elements and 788
nodes. The analysis involved in this simple problem is representative of more
complex structures such as an automotive disk brake with approximately 4000
elements and 6000 nodes just to model the pads and rotor. Because of the
simplicity of our example, the simulation of the grinding process is executed
on one processor of the IBM SP-2. Hence the focus is on the analysis of the
simulation with CAVE; we do not focus on the decomposition methods or
interprocessor communication of the parallel machine. These issues, however,
are discussed briefly in Section 6.3.

5.1 Timing Relationships

The CAVE library and the application code were instrumented using the Pablo
system [12] and some SGI timing routines. The average time for each lag source

Figure 3: Virtual grinder.

Table 1: Various lag values for the base case.

Lag Mean | Std. Dev. || %Quicw | %Qinteract
(ms) (ms)

Tirack 30.0 8.8 11.19 4.34
Tognerry | 150 — 5.0 217
Trender 208.0 0.069 77.61 30.14
Topnecrs) || 990 — NA 14.35
Twrite 0.102 0.048 NA 0.01
Toim 21.8 1.2 NA 3.16
Tread 197.0 65.0 NA 28.55
Toynesmy | 1042 — NA 5.1
Toynetr) 15.0 — | 5.60 2.17

is given in Table 1. The timings along with the standard deviations are based
upon a sample space of 300-400 data points. The values with no corresponding
standard deviations correspond to the sources of synchronization lag, which
are derived from other values. The total lag time for Qe = 268.0 ms and
Qinteract = 690.0 ms. As a point of reference, Liu et. al. [9] conducted experi-
ments on a telemanipulation system and found the allowable lag time to be 100
ms and 1000 ms (1s) for inexperienced and experienced users, respectively. The
Tsyne(r) value is based upon a frame rate of 48 frames per second per eye and
an average scan rate of 120 Hz for the Marquee 8000 projectors. The average
of this synchronization lag i1s equal to one half of the frame-induce time. The
system configuration consisted of a Ethernet connection between the SGI Onyx
and IBM SP-2.

The values indicate that the rendering time is the major lag component
for viewpoint lag, Qyiew, comprising 77.61% of the lag time. For Qnteract,
the rendering and read network times are the major lag components, together
comprising 58.69% of the lag time. For the case involving a very complex simu-
lation, the profile of @Qinierqer Will change with the possibility of the simulation
time also being a major component of the lag time; the Qy;e profile would
remain the same.

6 Lag-Reducing Methods

In this section we consider methods for reducing the end-to-end lag. We focus
on the rendering, simulation, and network lags, which can be major factors
affecting the end-to-end lag as discussed in the previous section. In particular
we focus on scene complexity, networks, and parallelism.

6.1 Scene Complexity

The rendering lag is a function of the scene complexity and the geometry trans-
formations. This scene consists of essential objects affected by the simulation
and the background used to give the scientist the illusion of being in the remote
environment. For the grinder application, the essential objects are the table,
part, and wheel. The image of the tool shop creates an illusion of being in a

Table 2: Various lag values for the reduction in scene complexity.

Lag Mean Std. Dev. %Qview %Qinteract
(ms) (ms)

Tirack 30.0 8.8 23.53 6.26
Toync(TR) 15.0 — 11.76 3.13
render 67.5 8.8 47.37 14.09
Tyync(RS) 99.0 — NA 20.67
write 0.102 0.048 NA 0.02
Toim 21.8 1.2 NA 4.55
Tread 197.0 65.0 NA 41.13
Toync(sR) 34.0 — NA 7.10
Toyne(F) 15.0 — 11.76 3.13

manufacturing setting. The rendering lag can be reduced by reducing the com-
plexity of the background without sacrificing the interface to the simulation.

We conducted an experiment to determine how much reduction can occur
when reducing the scene complexity. In particular, we eliminated all the ren-
dering code associated with the background, the image of the machine shop,
and extracted the new times of each of the sources of lag. The results are given
in Table 2. The total time for Qysee = 127.5 ms and Q;nterac: = 479.0 ms. The
results indicate that the rendering time is reduced by a factor of one third —
208 ms to 67.5 ms. This reduction results in a Q;nterqct reduction by a factor of
two thirds — 690 ms to 479 ms, and a (Qy;e reduction by a factor of one half —
268 ms to 127.5 ms. Hence reduction in scene complexity had a major impact
on the lag time for the grinder application. The read network time becomes
the major factor with Qinierace.

6.2 Network Latency

The current configuration of the supercomputing/virtual environment consists
uses a local Ethernet connection. The use of HIPPI only connections or ATM
only connections would reduce the time needed for T}.qq and Typrite.

The network connections become very important if the supercomputing in-
volved is located at a remote site, involving WAN connections. For this case the
network latency can dominate the interaction lag. Latency-hiding techniques
must be used to overcome this lag. This can be achieved by overlapping the
simulation computation with the shipping of the generated data. The network
would be time multiplexed between the simulation processors such that it is
always busy shipping data.

6.3 Parallelism

Further parallelism can be exploited with the rendering algorithms as well as
the simulation. Parallel graphics algorithms is a very active area of research.
Parallelism 1s exploited in the CAVE environment by spawning off processes
for the tracking systems and the three rendering processes. Further parallelism

can be exploited within each rendering process in terms of the different objects
involved in the display.

Much work has been done with parallel finite element analysis. This work
involves exploiting the data parallelism available in the problem. For this envi-
ronment, the network connection must also be considered. The decomposition
method must incorporate strategies for keeping the network connection to the
graphics process as busy as possible, as discussed above. The network lag can
by a major contributor of the interaction lag as illustrated by the preceding
section in which 7,..,4 was the major component of the interaction lag for the
display with no texturing.

7 Summary

Lag has been often studied in the context of teleoperated machines;, head-
mounted displays, and telepresence systems [9, 16]. In this paper we extended
these models and techniques for lag analysis to those suitable for analysis of
integrated supercomputer applications with interactive, immersive virtual in-
terfaces. This extension consisted of the addition of two additional sources of
end-to-end lag, network time and simulation time. We provided the framework
of a performance model to provide insight on the major contributions of lag
time for supercomputing/virtual environment.

We conducted an extensive case study of a supercomputing/virtual system
used to display the results of a finite element simulation of a grinding process,
a simple but widely used manufacturing task. The results indicated that the
rendering time 1s the major component for viewpoint lag, @Qyieyw, comprising
55.61% of the lag time. For Qinterqct, the rendering and read network times
are the major lag components, together comprising 58.69% of the lag time. For
the case when of a very complex simulation, the profile of Q;pteracr Will change
with the simulation time also being a major component of the lag time; the
Quview profile would remain the same.

We also discussed some methods to reduce the end-to-end lag for a super-
computing/virtual system. We considered scene complexity, parallelism, and
network latency. We conducted an experiment to measure the impact on lag
time from reducing the scene complexity. The results indicated that the ren-
dering time is reduced by a factor of one third — 208 ms to 67.5 ms. This
reduction results in a Q;pterqet reduction by a factor of two thirds — 690 ms to
479 ms, and a ;e reduction by a factor of one half — 268 ms to 127.5 ms.
Hence reduction in scene complexity had a major impact on the lag time for
the grinder applications.

Acknowledgments

The authors acknowledge Chris Stauffer for the time devoted to collecting some
of the data used in this paper and Micheal Papka, Terry Disz, Shannon Brad-
shaw, and William Nickless for the hours of discussions about the CAVE. The
first author was supported by a National Science Foundation Young Investi-
gator Award, under grant CCR-9357781. The second and third authors were

supported by the Office of Scientific Computing, U.S. Department of Energy,
under Contract W-31-109-Eng-38.

References

(1]

[10]

[11]

Deering M. High Resolution Virtual Reality. Computer Graphics 1992;
26:195-202

The Flock of Buirds Installation and Operation Guide, Ascension Technol-
ogy Corporation, 1994

Friedmann M, Starner T, Pentland A. Device Synchronization Using an
Optimal Linear Filter. Computer Graphics 1992; 25:57-62

Funkhouser T, Sequin C H. Adaptive Display Algorithm for Interactive
Frame During Visualization of Complex Virtual Environments. Computer

Graphics 1993; 27:247-254

Holloway R L. Viper: A Quasi-real-time Virtual Worlds Application. Tech-
nical Report TR92-0004, University of North Carolina at Chapel Hill, 1991

Hughes T. The Finite Element Method, Prentice-Hall, Inc., Englewood
Chiffs, NJ, 1987

Jones M, Plassmann P. Solution of Large, Sparse Systems of Linear Equa-
tions in Massively Parallel Applications. In: Proceedings of Supercomput-
g, 1992

Liang J, Shaw C, Green M. On Temporal-Spatial Realism in the Virtual
Reality Environment. In: Proceedings of the 1991 User Interface Software
Technology, 1991, pp 19-25

Liu A, Tharp G, French L, Lai S, Stark L. Some of What One Needs
to Know about Using Head-Mounted Displays to Improve Teleoperator
Performance. IEEFE Transactions on Robotics and Automation 1993; 9:638-
648

Mine M R. Characterization of End-to-End Delays in Head-Mounted Dis-
play System. Technical Report TRY93-001, University of North Carolina at
Chapel Hill, 1993

Cruz-Neira C, Sandin D J, DeFanti T. Surround-Screen Projection-Based
Virtual Reality: The Design and Implementation of the CAVE. In: Pro-
ceedings of SIGGRAPH, 1993, pp 135-142

Noe R. Pablo Instrumentation Environment User’s Guide. University of
Ilinocis at Urbana-Champaign, Department of Computer Science, 1994

Silicon Graphics Onyz Installation Guide. Document Number 108-7042-
010.

Smith B, Gropp W. Scalable, Extensible, and Portable Numerical Li-
braries. In: Proceedings of Scalable Parallel Libraries Conference,1993, pp
87-93

[15] Wloka M. Time-critical Graphics. Technical Report CS-93-50. Brown Uni-

versity, Department of Computer Science, 1993

[16] Wloka M. Lag in Multiprocessor Virtual Reality. Presence 1995; 4:50-63

